هندسه نااقليدسي و انحناي فضا

مقدمه

علومي كه از يونان باستان توسط انديشمندان اسلامي محافظت و تكميل شد، از قرون يازدهم ميلادي به بعد به اروپا منتقل شد، بيشتر شامل رياضي و فلسفه ي طبيعي بود. فلسفه ي طبيعي توسط كوپرنيك، برونو، كپلر و گاليله به چالش كشيده شد و از آن ميان فيزيك نيوتني بيرون آمد. چون كليسا خود را مدافع فلسفه طبيعي يونان مي دانست و كنكاش در آن با خطرات زيادي همراه بود، انديشمندان كنجكاو بيشتر به رياضيات مي پرداختند، زيرا كليسا نسبت به آن حساسيت نشان نمي داد. بنابراين رياضيات نسبت به فيزيك از پيشرفت بيشتري برخوردار بود. يكي از شاخه هاي مهم رياضيات هندسه بود كه آن هم در هندسه ي اقليدسي خلاصه مي شد.

در هندسه ي اقليدسي يكسري مفاهيم اوليه نظير خط و نقطه تعريف شده بود و پنچ اصل را به عنوان بديهيات پذيرفته بودند و ساير قضايا را با استفاده از اين اصول استنتاج مي كردند. اما اصل پنجم چندان بديهي به نظر نمي رسيد. بنابر اصل پنجم اقليدس از يك نقطه خارج از يك خط، يك خط و تنها يك خط مي توان موازي با خط مفروض رسم كرد. برخي از رياضيدانان مدعي بودند كه اين اصل را مي توان به عنوان يك قضيه ثابت كرد. در اين راه بسياري از رياضيدانان تلاش زيادي كردند و نتيجه نگرفتند. خيام ضمن جستجوي راهي براي اثبات "اصل توازي" مبتكر مفهوم عميقي در هندسه شد. در تلاش براي اثبات اين اصل، خيام گزاره هايي را بيان كرد كه كاملا مطابق گزاره هايي بود كه چند قرن بعد توسط واليس و ساكري رياضيدانان اروپايي بيان شد و راه را براي ظهور هندسه هاي نااقليدسي در قرن نوزدهم هموار كرد. سرانجام و پس از دو هزار سال اصولي متفاوت با آن بيان كردند و هندسه هاي نااقليدسي شكل گرفت. بدين ترتيب علاوه بر فلسفه ي طبيعي رياضيات نيز از انحصار يوناني خارج و در مسيري جديد قرار گرفت و آزاد انديشي در رياضيات آغاز گرديد.

1-5 اصطلاحات بنيادي رياضيات

طي قرنهاي متمادي رياضيدانان اشياء و موضوع هاي مورد مطلعه ي خود از قبيل نقطه و خط و عدد را همچون كميت هايي در نظر مي گرفتند كه در نفس خويش وجود دارند. اين موجودات همواره همه ي كوششهاي را كه براي تعريف و توصيف شايسته ي آنان انجام مي شد را با شكست مواجه مي ساختند. بتدريج اين نكته بر رياضيدانان قرن نوزدهم آشكار گرديد كه تعيين مفهوم اين موجودات نمي تواند در داخل رياضيات معنايي داشته باشد. حتي اگر اصولاً داراي معنايي باشند.

بنابراين، اينكه اعداد، نقطه و خط در واقع چه هستند در علوم رياضي نه قابل بحث است و نه احتياجي به اين بحث هست. يك وقت براتراند راسل گفته بود كه رياضيات موضوعي است كه در آن نه مي دانيم از چه سخن مي گوييم و نه مي دانيم آنچه كه مي گوييم درست است.

دليل آن اين است كه برخي از اصطلاحات اوليه نظير نقطه، خط و صفحه تعريف نشده اند و ممكن است به جاي آنها اصطلاحات ديگري بگذاريم بي آنكه در درستي نتايج تاثيري داشته باشد. مثلاً مي توانيم به جاي آنكه بگوييم دو نقطه فقط يك خط را مشخص مي كند، مي توانيم بگوييم دو آلفا يك بتا را مشخص مي كند. با وجود تغييري كه در اصطلاحات داديم، باز هم اثبات همه ي قضاياي ما معتبر خواهد ماند، زيرا كه دليل هاي درست به شكل نمودار بسته نيستند، بلكه فقط به اصول موضوع كه وضع شده اند و قواعد منطق بستگي دارند.

بنابراين، رياضيات تمريني است كاملاً صوري براي استخراج برخي نتايج از بعضي مقدمات صوري. رياضيات احكامي مي سازند به صورت هرگاه چنين باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتي از معني فرضها يا راست بودن آنها نيست. اين ديدگاه (صوريگرايي) با عقيده ي كهن تري كه رياضيات را حقيقت محض مي پنداشت و كشف هندسه هاي نااقليدسي بناي آن را درهم ريخت، جدايي اساسي دارد. اين كشف اثر آزادي بخشي بر رياضيدانان داشت.

2-5 اشكالات وارد بر هندسه اقليدسي

هندسه ي اقليدسي بر اساس پنچ اصل موضوع زير شكل گرفت:

اصل اول - از هر نقطه مي توان خط مستقيمي به هر نقطه ي ديگر كشيد.

اصل دوم - هر پاره خط مستقيم را مي توان روي همان خط به طور نامحدود امتداد داد.

اصل سوم - مي توان دايره اي با هر نقطه دلخواه به عنوان مركز آن و با شعاعي مساوي هر پاره خط رسم كرد.

اصل چهارم - همه ي زواياي قائمه با هم مساوي اند.

اصل پنجم - از يك نقطه خارج يك خط، يك خط و و تنها يك خط مي توان موازي با خط مفروض رسم كرد.

اصل پنجم اقليدس كه ايجاز ساير اصول را نداشت، به هيچوجه واجد صفت بديهي نبود. در واقع اين اصل بيشتر به يك قضيه شباهت داشت تا به يك اصل. بنابراين طبيعي بود كه لزوم واقعي آن به عنوان يك اصل مورد سئوال قرار گيرد. زيرا چنين تصور مي شد كه شايد بتوان آن را به عنوان يك قضيه نه اصل از ساير اصول استخراج كرد، يا حداقل به جاي آن مي توان معادل قابل قبول تري قرار داد.

در طول تاريخ رياضيدانان بسياري از جمله، خواجه نصيرالدين طوسي، جان واليس، لژاندر، فوركوش بويوئي و ... تلاش كردند اصل پنجم اقليدس را با استفاده از ساير اصول نتيجه بگيرنر و آن را به عنوان يك قضيه اثبات كنند. اما تمام تلاشها بي نتيجه بود و در اثبات دچار خطا مي شدند و به نوعي همين اصل را در اثباط خود به كار مي بردند. دلامبر اين وضع را افتضاح هندسه ناميد.

يانوش بويوئي يكي از رياضيدانان جواني بود كه در اين را تلاش مي كرد. پدر وي نيز رياضيداني بود كه سالها در اين اين مسير تلاش كرده بود .

و طي نامه اي به پسرش نوشت: تو ديگر نبايد براي گام نهادن در راه توازي ها تلاش كني، من پيچ و خم اين راه را از اول تا آخر مي شناسم. اين شب بي پايان همه روشنايي و شادماني زندگي مرا به كام نابودي فرو برده است، التماس مي كنم دانش موازيها را رها كني.

ولي يانوش جوان از اخطار پدير نهرسيد، زيرا كه انديشه ي كاملاً تازه اي را در سر مي پروراند. او فرض كرد نقيض اصل توازي اقليدس، حكم بي معني اي نيست. وي در سال 1823 پدرش را محرمانه در جريان كشف خود قرار داد و در سال 1831 اكتشافات خود را به صورت ضميمه در كتاب تنتامن پدرش منتشر كرد و نسخه اي از آن را براي گائوس فرستاد. بعد معلوم شد كه گائوس خود مستقلاً آن را كشف كرده است.

بعدها مشخص شد كه لباچفسكي در سال 1829 كشفيات خود را در باره هندسه نااقليدسي در بولتن كازان، دو سال قبل از بوئي منتشر كرده است. و بدين ترتيب كشف هندسه هاي نااقليدسي به نام بويوئي و لباچفسكي ثبت گرديد.

3-5 هندسه هاي نا اقليدسي

اساساً هندسه نااقليدسي چيست؟ هر هندسه اي غير از اقليدسي را نا اقليدسي مي نامند. از اين گونه هندسه ها تا به حال زياد شناخته شده است. اختلاف بين هندسه هاي نا اقليدسي و اقليدسي تنها در اصل توازي است. در هندسه اقليدسي به ازاي هر خط و هر نقطه نا واقع بر آن يك خط مي توان موازي با آن رسم كرد.

نقيض اين اصل را به دو صورت مي توان در نظر گرفت. تعداد خطوط موازي كه از يك نقطه نا واقع بر آن، مي توان رسم كرد، بيش از يكي است. و يا اصلاً خطوط موازي وجود ندارند. با توجه به اين دو نقيض، هندسه هاي نا اقليدسي را مي توان به دو گروه تقسيم كرد.

يك - هندسه هاي هذلولوي

هندسه هاي هذلولوي توسط بويوئي و لباچفسكي بطور مستقل و همزمان كشف گرديد.

اصل توازي هندسه هذلولوي - از يك خط و يك نقطه ي نا واقع بر آن دست كم دو خط موازي با خط مفروض مي توان رسم كرد.

دو - هندسه هاي بيضوي

در سال 1854 فريدريش برنهارد ريمان نشان داد كه اگر نامتناهي بودن خط مستقيم كنار گذاشته شود و صرفاً بي كرانگي آن مورد پذيرش واقع شود، آنگاه با چند جرح و تعديل جزئي اصول موضوعه ديگر، هندسه سازگار نااقليدسي ديگري را مي توان به دست آورد. پس از اين تغييرات اصل توازي هندسه بيضوي بصورت زير ارائه گرديد.

اصل توازي هندسه بيضوي - از يك نقطه ناواقع بر يك خط نمي توان خطي به موازات خط مفروض رسم كرد.

يعني در هندسه بيضوي، خطوط موازي وجود ندارد. با تجسم سطح يك كره مي توان سطحي شبيه سطح بيضوي در نظر گرفت. اين سطح كروي را مشابه يك صفحه در نظر مي گيرند. در اينجا خطوط با دايره هاي عظميه كره نمايش داده مي شوند. بنابراين خط ژئودزيك يا مساحتي در هندسه بيضوي بخشي از يك دايره عظيمه است.

در هندسه بيضوي مجموع زواياي يك مثلث بيشتر از 180 درجه است. در هندسه بيضوي با حركت از يك نقطه و پيمودن يك خط مستقيم در آن صفحه، مي توان به نقطه ي اول باز گشت. همچنين مي توان ديد كه در هندسه بيضوي نسبت محيط يك دايره به قطر آن همواره كمتر از عدد پي است.

4-5 انحناي سطح يا انحناي گائوسي

اگر خط را راست فرض كنيم نه خميده، چنانچه ناگزير باشيم يك انحناي عددي k به خطي نسبت دهيم براي خط راست خواهيم داشت k=o انحناي يك دايره به شعاع r برابر است با k=1/r.

تعريف مي كنند. همچنين منحني هموار، منحني اي است كه مماس بر هر نقطه اش به بطور پيوسته تغيير كند. به عبارت ديگر منحني هموار يعني در تمام نقاطش مشتق پذير باشد.

براي به دست آوردن انحناي يك منحني در يك نقطه، دايره بوسان آنرا در آن نقطه رسم كرده، انحناي منحني در آن نقطه برابر با انحناي دايره ي بوسان در آن نقطه است. دايره بوسان در يك نقطه از منحني، دايره اي است كه در آن نقطه با منحني بيشترين تماس را دارد. توجه شود كه براي خط راست شعاع دايره بوسان آن در هر نقطه واقع بر آن بينهايت است.

براي تعيين انحناي يك سطح در يك نقطه، دو خط متقاطع مساحتي در دو جهت اصلي در آن نقطه انتخاب كرده و انحناي اين دو خط را در آن نقاط تعيين مي كنيم. فرض كنيم انحناي اين دو خط

k1=1/R1 and k2=1/R2

باشند. آنگاه انحناي سطح در آن نقطه برابر است با حاصلضرب اين دو انحنا، يعني :

k=1/R1R2

انحناي صفحه ي اقليدسي صفر است. همچنين انحناي استوانه صفر است:

k=o

براي سطح هذلولوي همواره انحناي سطح منفي است :

k

براي سطح بيضوي همواره انحنا مثبت است :

k>o

در جدول زير هر سه هندسه ها با يكديگر مقايسه شده اند:


نوع هندسه
تعداد خطوط موازي
مجموع زواياي مثللث
نسبت محيط به قطر دايره
اندازه انحنا
اقليدسي
يك
180
عدد پي
صفر
هذلولوي
بينهايت
< 180
> عدد پي
منفي
بيضوي
صفر
> 180
< عدد پي
مثبت



4-6 مفهوم و درك شهودي انحناي فضا

سئوال اساسي اين است كه كدام يك از اين هندسه هاي اقليدسي يا نا اقليدسي درست است؟

پاسخ صريح و روشن اين است كه بايد انحناي يك سطح را تعيين كنيم تا مشخص شود كدام يك درست است. بهترين دانشي كا مي تواند در شناخت نوع هندسه ي يك سطح مورد استفاده و استناد قرار گيرد، فيزيك است. يك صفحه ي كاغذ برداريد و در روي آن دو خط متقاطع رسم كنيد. سپس انحناي اين خطوط را در آن نقطه تعيين كرده و با توجه به تعريف انحناي سطح حاصلضرب آن را به دست مي آوريم. اگر مقدار انحنا برابر صفر شد، صفحه اقليدسي است، اگر منفي شد مي گوييم صفحه هذلولوي است و در صورتي كه مثبت شود، ادعا مي كنيم كه صفحه بيضوي است .

در كارهاي معمولي مهندسي نظير ايجاد ساختمان يا ساختن يك سد بر روي رودخانه، انحناي سطح مورد نظر برابر صفر است، به همين دليل در طول تلريخ مهندسين همواره از هندسه اقليدسي استفاده كرده اند و با هيچگونه مشكلي هم مواجه نشدند. يا براي نقشه برداري از سطح يك كشور اصول هندسه ي اقليدسي را بكار مي برند و فراز و نشيب نقاط مختلف آن را مشخص مي كنند. در اين محاسبات ما مي توانيم از خطكش هايي كه در آزمايشگاه يا كارخانه ها ساخته مي شود، استفاده كنيم. حال سئوال اين است كه اگر خطكش مورد استفاده ي ما تحت تاثير شرايط محيطي قرار بگيرد چه بايد كرد؟ اما مي دانيم از هر ماده اي كه براي ساختن خطكش استفاده كنيم، شرايط فيزيكي محيط بر روي آن اثر مي گذارد. البته با توجه با تاثير محيط بر روي خطكش ما تلاش مي كنيم از بهترين ماده ي ممكن استفاده كنيم. بهمين دليل چوب از لاستيك بهتر است و آهن بهتر از چوب است.

اما براي مصافتهاي دور نظير فواصل نجومي از چه خطكشي (متري) مي توانيم استفاده كنيم؟ طبيعي است كه در اينجا هيچ خطكشي وجود ندارد كه بتوانيم با استفاده از آن فاصله ي بين زمين و ماه يا ستارگان را اندازه بگيريم. بنابراين بايد به ساير امكاناتي توجه كنيم كه در عمل قابل استفاده است. اما در اينجا چه امكاناتي داريم؟ بهترين ابزار شناخته شده امواج الكترومغناطيسي است. اگر مسير نور در فضا خط مستقيم باشد، در اينصورت با جرت مي توانيم ادعا كنيم كه فضا اقليدسي است. براي پي بردن به نوع انحناي فضا بايد مسير پرتو نوري را مورد بررسي قرار دهيم .

اما تجربه نشان مي دهد كه مسير نور هنگام عبور از كنار ماده يعني زماني كه از يك ميدان گرانشي عبور مي كند، خط مستقيم نيست، بلكه منحني است. بنابراين فضاي اطراف اجسام اقليدسي نيست. به عبارت ديگر ساختار هندسي فضا نااقليدسي است

هندسه نااقليدسى و نسبيت عام اينشتين  

در قرن نوزدهم دو رياضيدان بزرگ به نام «لباچفسكى» و «ريمان» دو نظام هندسى را صورت بندى كردند كه هندسه را از سيطره اقليدس خارج مى كرد. صورت بندى «اقليدس» از هندسه تا قرن نوزدهم پررونق ترين كالاى فكرى بود و پنداشته مى شد كه نظام اقليدس يگانه نظامى است كه امكان پذير است. اين نظام بى چون و چرا توصيفى درست از جهان انگاشته مى شد. هندسه اقليدسى مدلى براى ساختار نظريه هاى علمى بود و نيوتن و ديگر دانشمندان از آن پيروى مى كردند. هندسه اقليدسى بر پنج اصل موضوعه استوار است و قضاياى هندسه با توجه به اين پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقليدس مى گويد: «به ازاى هر خط و نقطه اى خارج آن خط، يك خط و تنها يك خط به موازات آن خط مفروض مى تواند از آن نقطه عبور كند.»

هندسه «لباچفسكى» و هندسه «ريمانى» اين اصل موضوعه پنجم را مورد ترديد قرار دادند. در هندسه «ريمانى» ممكن است خط صافى كه موازى خط مفروض باشد از نقطه مورد نظر عبور نكند و در هندسه «لباچفسكى» ممكن است بيش از يك خط از آن نقطه عبور كند. با اندكى تسامح مى توان گفت اين دو هندسه منحنى وار هستند. بدين معنا كه كوتاه ترين فاصله بين دو نقطه يك منحنى است.

هندسه اقليدسى فضايى را مفروض مى گيرد كه هيچ گونه خميدگى و انحنا ندارد. اما نظام هندسى لباچفسكى و ريمانى اين خميدگى را مفروض مى گيرند. (مانند سطح يك كره) همچنين در هندسه هاى نااقليدسى جمع زواياى مثلث برابر با 180 درجه نيست. (در هندسه اقليدسى جمع زواياى مثلث برابر با 180 درجه است.) ظهور اين هندسه هاى عجيب و غريب براى رياضيدانان جالب توجه بود اما اهميت آنها وقتى روشن شد كه نسبيت عام اينشتين توسط بيشتر فيزيكدانان به عنوان جايگزينى براى نظريه نيوتن از مكان، زمان و گرانش پذيرفته شد. چون صورت بندى نسبيت عام اينشتين مبتنى بر هندسه «ريمانى» است. در اين نظريه هندسه زمان و مكان به جاى آن كه صاف باشد منحنى است.

نظريه نسبيت خاص اينشتين تمايز آشكارى ميان رياضيات محض و رياضيات كاربردى است. هندسه محض مطالعه سيستم هاى رياضى مختلف است كه به وسيله نظام هاى اصول موضوعه متفاوتى توصيف شده اند. برخى از آنها چندبعدى و يا حتى nبعدى هستند. اما هندسه محض انتزاعى است و هيچ ربطى با جهان مادى ندارد يعنى فقط به روابط مفاهيم رياضى با همديگر، بدون ارجاع به تجربه مى پردازد. هندسه كاربردى، كاربرد رياضيات در واقعيت است. هندسه كاربردى به وسيله تجربه فراگرفته مى شود و مفاهيم انتزاعى برحسب عناصرى تفسير مى شوند كه بازتاب جهان تجربه اند. نظريه نسبيت، تفسيرى منسجم از مفهوم حركت، زمان و مكان به ما مى دهد. اينشتين براى تبيين حركت نور از هندسه نااقليدسى استفاده كرد. بدين منظور هندسه «ريمانى» را برگزيد.

هندسه اقليدسى براى دستگاهى مشتمل بر خط هاى راست در يك صفحه طرح ريزى شده است اما در عالم واقع يك چنين خط هاى راستى وجود ندارد. اينشتين معتقد بود امور واقع هندسه ريمانى را اقتضا كرده اند. نور بر اثر ميدان هاى گرانشى خميده شده و به صورت منحنى در مى آيد يعنى سير نور مستقيم نيست بلكه به صورت منحنى ها و دايره هاى عظيمى است كه سطح كرات آنها را پديد آورده اند. نور به سبب ميدان هاى گرانشى كه بر اثر اجرام آسمانى پديد مى آيد خط سيرى منحنى دارد. براساس نسبيت عام نور در راستاى كوتاه ترين خطوط بين نقاط حركت مى كند اما گاهى اين خطوط منحنى هستند چون حضور ماده موجب انحنا در مكان - زمان مى شود.
در نظريه نسبيت عام گرانش يك نيرو نيست بلكه نامى است كه ما به اثر انحناى زمان _ مكان بر حركت اشيا اطلاق مى كنيم. آزمون هاى عملى ثابت كردند كه شالوده عالم نااقليدسى است و شايد نظريه نسبيت عام بهترين راهنمايى باشد كه ما با آن مى توانيم اشيا را مشاهده كنيم. اما مدافعين هندسه اقليدسى معتقد بودند كه به وسيله آزمايش نمى توان تصميم گرفت كه ساختار هندسى جهان اقليدسى است يا نااقليدسى. چون مى توان نيروهايى به سيستم مبتنى بر هندسه اقليدسى اضافه كرد به طورى كه شبيه اثرات ساختار نااقليدسى باشد. نيروهايى كه اندازه گيرى هاى ما از طول و زمان را چنان تغيير دهند كه پديده هايى سازگار با زمان - مكان خميده به وجود آيد. اين نظريه به «قراردادگرايى» مشهور است كه نخستين بار از طرف رياضيدان و فيزيكدان فرانسوى «هنرى پوانكاره» ابراز شد. اما نظريه هايى كه بدين طريق به دست مى آوريم ممكن است كاملاً جعلى و موقتى باشند. اما دلايل كافى براى رد آنها وجود دارد؟

هندسه اقلیدسی



هندسهٔ اقلیدسی به مجموعهٔ گزاره‌هایِ هندسی‌ای اطلاق می‌شود که به بررسی موجودات ریاضیاتی مثل نقطه و خط می‌پردازد و بر پایه‌هائی که اقلیدس ریاضی‌دان یونانی در کتاب خود به‌نام اصول عرضه کرده، بنا شده است. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شده‌اند و بخش بزرگی از آن همان است که در دبیرستان‌ها تدریس می‌شود. کتابِ «اصولِ» اقلیدس یکی از بزرگ‌ترین و تأثیرگذارترین کتاب‌ها چه به لحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعه‌ای‌اش بوده است. تا قرن نوزدهم میلادی هر وقت از هندسه سخن می‌رفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» می‌نامند. این مفاهیم را به ابعاد بالاتر از سه نیز می‌توان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.


 تاریخچه

در حدود ۳۰۰ سال قبل از میلاد دنیای هندسه در تب و تاب بود. نظرات مختلفی در زمینهٔ هندسه وجود داشت و سرانجام اقلیدس با انتشار کتاب اصول بنیادی را بنا نهاد که تا قرن‌ها منسجم‌ترین بنیادهای نظری بشر محسوب می‌شود. روش اقلیدس ساده بود او چند اصل موضوع و چند اصل متعارف را بدون اثبات به عنوان اصول بدیهی پذیرفت و سپس بر اساس آن صدها قضیه دیگر را اثبات کرد که بیشتر آن‌ها بسیار دور از ذهن بودند.

اقلیدس شاگرد مکتب افلاطون بود. او در اصول سیزده جلدی خود تمام دانش بشری تا آن زمان گرد آورد و به مدت دو هزار سال مرجعی بی‌بدیل باقی ماند. روش بنداشتی (اصل موضوع) اقلیدس منجر به کاربرد الگویی شد که امروزه به آن ریاضیات محض می‌گوییم. محض از این نظر که با اندیشهٔ محض سر و کار دارد و از راه آزمون خطا و تجربه به دست نمی‌آید و درستی یا نادرستی احکام آن را نیز از راه تجربه نمی‌توان اثبات یا نفی کرد. برای استفاده از روش بنداشتی یا اصل موضوع دو شرط را باید پذیرفت:

    * شرط اول: پذیرفتن احکامی به نام بنداشت یا اصل موضوع که به هیچ توجیه دیگری نیاز نداشته باشند.
    * شرط دوم: توافق بر این‌که کی و چگونه حکمی "به طور منطقی" از حکم دیگر نتیجه می‌شود، یعنی توافق در برخی قواعد استدلال.

کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بی‌نیاز به توجیهی پذیرفتنی بودند دست‌چین کرد، و از آن‌ها 465 گزاره نتیجه گرفت. زیبایی کار اقلیدس در این است که این همه را از آن اندک نتیجه گرفت.



اصول موضوعه

تمامِ هندسهٔ اقلیدسی (تمامِ قضیه‌هایی که در دبیرستان می‌خوانیم، قضیهٔ فیثاغورس و غیره) می‌توانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:

   1. از هر دو نقطه یک خطِ راست می‌گذرد.
   2. هر پاره‌خط را می‌توان تا بینهایت رویِ خطِ راست امتداد داد.
   3. با یک نقطه به عنوانِ مرکز و یک پاره‌خط به عنوانِ شعاع می‌توان یک دایره رسم نمود.
   4. همهٔ زوایایِ قائمه با هم برابر اند.
   5. اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کم‌تر از دو قائمه است به هم می‌رسند (اگر ادامه داده شوند).

برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همان‌طور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزاره‌ها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریف‌نشده‌ها» می‌گویند. همان‌طور که دیده می‌شود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر می‌آیند. به همین‌دلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (من‌جمله خیام ریاضیدانِ ایرانی) تلاش کرده‌اند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خورده است. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسه‌ای متناقض پدید می‌آید یا نه. از آن‌جا که هیچ تناقضی در هندسه‌هایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آن‌ها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید می‌کند. نظریهٔ نسبیت عام به این پرسش پاسخ می‌دهد.



اصول متعارفی

   1. دو مقدار مساوی بامقدار سوم با هم مساوی اند.
   2. اگر به دو مقدار مساوی مقادیر مساوی اضافه کنیم، حاصل جمع‌ها با هم مساوی اند.
   3. اگر از دو مقدار مساوی مقادیر مساوی کم کنیم، باقیمانده‌ها با هم مساوی اند.
   4. دو چیز قابل انطباق با هم برابر اند.
   5. کل از جزء بزرگ‌تر است.



پس از اقلیدس

2100 سال پس از اقلیدس هندسهٔ او یگانه هندسهٔ موجود بود. با این وجود در طی این مدت طولانی ریاضی‌دان‌های زیادی کوشیدند اصل پنجم را از روی سایر اصل اثبات کنند که این کوشش‌ها سرانجام به نتیجهٔ دیگری منجر شد و در اوایل قرن نوزدهم هندسه‌های جدیدی به وجود آمد که هندسه‌های نااقلیدسی نامیده می‌شود. هندسه‌یی که تنها بر اساس چهار اصل اول اقلیدس ساخته می‌شود هندسه نتاری نامیده می‌شوند. دیوید هیلبرت در آخرین سال قرن نوزدهم (1899) کتاب "مبانی هندسه" خود را نوشت. هیلبرت در این کتاب صورت‌بندی دقیق‌تری از هندسهٔ اقلیدسی ارائه دارد.

پایه های اولیه هندسه نااقلیدسی

نیکلای ایوانویچ لباچفسکی (Lobachevsky, Nikolay Ivanovich) از جمله اولین کسانی بود که قواعد هندسه اقلیدسی را که بیش از 2000 سال بر علوم مختلف ریاضی و فیزیک حاکم بود درهم شکست. کسی باورش نمی شد هنگامی که اروپا مرکز علم بود شخصی در گوشه ای از روسیه بتواند پایه های هندسه اقلیدسی را به لرزه در بیاورد و پایه های علم در قرن نوزدهم را پی ریزی کند.


خیال نداریم راجع به خود او صحبت کنیم بلکه می خواهیم بطور مختصر بیان کنیم که او چه کرد. در میان اصول هندسه اقلیدسی اصلی وجود دارد به اینصورت : از هر نقطه خارج یک خط نمی توان بیش از یک خط موازی ( در همان صفحه ای که خط و نقطه در آن قرار دارند) به موازات آن خط رسم کرد.

در طول سالها این اصل اقلیدس مشکل بزرگی برای ریاضی دانان بود. چرا که ظاهری شبیه به قضیه داشت تا اصل. مقایسه کنید آنرا با این اصل اقلیدس که می گوید بین هر دو نقطه می توان یک خط راست کشید و یا اینکه همه زوایای قائمه با هم برابر هستند.

حقیقت آن است که بسیاری از ریاضی دانان سعی کردند که این اصل اقلیدس را اثبات کنند اما متاسفانه هرگز این امر ممکن نشد. حتی خیام در برخی مقالات خود سعی در اثبات این اصل کرد اما او نیز همانند سایرین به نتیجه نرسید.

لباچفسکی (1792 - 1856) نیز همانند بسیاری از دانشمندان علوم ریاضی سعی در اثبات این اصل کرد و هنگامی که به نتیجه مطلوب نرسید نزد خود به این فکر فرو رفت که این چه هندسه ای است که بر پایه چنین اصل بی اعتباری استوار شده است. اما لباچفسکی در کوشش بعدی خود سعی کرد تا رابطه میان هندسه و دنیای واقعی را پیدا کند.

او معتقد بود اگر نتوانیم از سایر اصول هندسه اقلیدسی این اصل را ثابت کنیم باید به فکر مجموعه اصول دیگری برای هندسه باشیم. اصولی که در دنیای واقعی حضور دارند. او پس از بررسی های بسیار چنین بیان کرد :

از هر نقطه خارج یک خط می توان لااقل دو خط در همان صفحه به موازات خط رسم کرد

هر چند پس از این فرض بنظر می رسید که وی در ادامه به تناقض های بسیاری خواهد رسید اما او توانست بر اساس همین فرض و مفروضات قبلی اقلیدس به مجموعه جدید از اصول هندسی برسد که حاوی هیچگونه تناقضی نباشد. او پایه های هندسه ای را بنا نهاد که بعدها کمک بسیار زیادی به فیزیک و مکانیک غیر نیوتنی نمود.